Problem set 2
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January 2026

1. Drude dynamics and the single relaxation time approximation: In class we used a simple model
in which each collision resets an electron’s momentum to p = 0. In this problem you will analyse this
model and several generalisations, and determine when they yield the same Drude dynamics.

(a) Consider electrons in an electric field, with collisions occurring as a Poisson process with mean
interval length 7, and each collision resetting the momentum to zero, p — 0.

i. Derive

dt T

where (p) is the average electron momentum, and 7 is the mean time between collisions.

dip) _ _.p_ P (1)

ii. Hence find the drift momentum p, (the steady-state value of p) and the Drude conductivity
ap.
iii. Show that the connected two-time correlator

Cij(t,s) = (pi(t + s)p; (1)) — (pi(t + 8)) (p;(2)) (2)
obeys
Cij(t,5) = Cy5(0,0)e %17 (3)

(b) More generally, suppose scattering is characterised by a transition rate kernel Wp_,,: in an in-
finitesimal interval dt, an electron with momentum p scatters to p’ with probability Wp_,,/dt. Let
f(r,p,t) be the phase-space density of electrons at position  and momentum p. The Boltzmann
equation is

of

E —ek- vpf = /d‘sq (Wq%pf(rv qvt) - Wp%qf(rap7 t)) (4)

Here the left-hand side is the free transport term, while the right-hand side is the collision integral.
The quantity

/ d’q(q —p) Wpq (5)

gives the rate of change of momentum for electrons with momentum p. Using , show that the
Drude dynamics for

W=y [ drip i

is obtained if

S I

/ Pq(q—p)Wp g = — (6)

This condition is in fact necessary and sufficient for Drude relaxation for arbitrary f(r,p).

(¢) A widely used simplification is the single relazation time approzimation, in which

Wp—>p’ = foéf )’ (7)




where n = [ &p fo(p =/ d®p f(p) is the electron density, and fy is an equilibrium distribution
satisfying

/ p folp) p = 0. ®)
Show that satisfies @, and that it reduces the Boltzmann equation to

of _Jo—f
afeE fo— - .

(9)

2. A failure of Drude’s theory: the thermoelectric correction: in this question you will derive
the transport coefficients of Drude theory using linear response.

(a)

One method of finding transport coefficients is studying the linear response of the solutions to the
Boltzmann equation. Here we have now included the effect of spatial variation (r dependence)

of fo—f

ot Vel 4 Vpf =2, (10)

with 7 = p/m and p = —e€ given by the electrochemical force € = E + %Vu. For constant T’
and € = 0, the equilibrium state is the Maxwell-Boltzmann distribution

2
fo(r,p) = 7(%”1:811)3/2 exp (_ 2mpkBT) _ (11)

In the presence of a weak electrochemical force £ and a weak spatial temperature variation VT
Let X7 = € and X9 = —VT. we Taylor expand f to linear order

f=fo+df1 +6fs, 5fj:Xj'VXjf|Xj=0 (12)

and neglect higher order terms. By using that f is a static solution to , show that

Fi"U’T

k‘BT an (13)

of; =

where F'; and F'5 are the electrochemical force, and the force due to the temperature gradient

respectively
2 vT
Fi=—cE, Fy=-— (2pm - 2kBT) - (14)

The corresponding linear-response electrical and heat current densities are

() = % [ adp rpi )

o (15)
(dq) = &Erd’p f(r,p)jgq. (P)

where j., (p) = —e(p/m) and j, . (p) = (p?/(2m) — p)(p/m) are the electrical and heat current
per electron.

These are related to thermal and electrical gradients by the relation

()= 22) (5r) (1)

Using your result for f, compute the Drude values for L.
You may use: standard Maxwell-Boltzmann expectation values

(vivg) = 301 (v*),  (gmo®) =(e) = §ksT, o2 =(*) — ()" = §(kpT)’ (17)



(c¢) Using the following definitions, express the matrix L, in terms of o, k, S and T
e The electrical conductivity o is defined by (j) = o€ for VT = 0.
e The thermal conductivity « is defined by <jq> = —kVT for () =0
e The Seebeck coefficient S is defined by € = S VT under open-circuit conditions (j) =0
e The Peltier coefficient II is defined by <jq> =1I(j) for VT = 0.
e The relation Il = T'S due to Kelvin.

(d) Hence compute the Drude linear response value of the Seebeck coefficient S.

(e) The thermal conductivity receives a correction if a current is allowed to flow by closing the circuit.

In terms of o, k, S and T, determine
i. The thermal conductivity Kcjosed, defined by <j q> = —Kelosed VI for £ =0

ii. The dimensionless thermoelectric correction to the thermal conductivity

- KRclosed — K
ok = —m—
K

(18)

(f) Finally, evaluate the Drude prediction for d&. Compare your answer for (2(e)ii) to the empirical

value of Jk for copper at room temperature. Comment on the success of Drude theory.
You may use: your calculation for S, the relations

ne’r 5nTkiT
0o = y K=5
m

II =ST
2 m s

(19)

and the following properties of copper at room temperature: Seebeck coefficient S = 2 x

1078 VK™, conductivity o9 = 5.9 x 107 Q'm~! and thermal conductivity 400 Wm~*K~*.

electromagnetic wave with electric field

E(r,t) = Eqcos(k -7 — wt).

3. The plasma frequency and the transparency of metals: Consider a Drude metal in an incident

(20)

Typically the mean free path of an electron A < k=1 = ¢/w, so we may neglect the spatial dependence

and write
E(t) = Egcos(wt).

(a) Consider a general superposition of frequencies,
E(t) = /dw e W EB(w),
and look for solutions to of the form

(1)) = / dwe™ " (p(w)

(21)

(22)

(23)

Find the AC conductivity o(w), defined by j(w) = o(w)E(w), in terms of the DC conductivity

00, w and 7.

(b) Using Maxwell’s equations with no net charge density,

0B OF
V.E:O7 VB:O, VXE:—W, VXB:/J/()J—FGO/JQE,

together with standard vector identities, show that
2 w?
V°E = —Cﬁe(w)E(w)

and find the complex dielectric function e(w) in terms of oyg.

(24)

(25)



(c)

Show that for wr > 1,

w?

wy=1--=2 (26)

2 )
w
where wy, is the plasma frequency. Find the classical Drude value of wy,.

For sufficiently low frequency, the metal is opaque, and solutions of (25)) decay exponentially
with a characteristic length £ (the penetration depth). Assuming a low frequency (but still with
wT > 1) calculate £ in terms of wy, and show that it diverges as w is increased through wy,.

For sufficiently high frequency, the metal is transparent and solutions of are propagating
waves with wavelength A. Express A in terms of w;, and show that it also diverges, this time as w
is decreased through wy,.

The plasma wavelength is A\, = 2mc/w,. Calculate A, for lithium (in Angstrom units). Compare
your result with the wavelength at which lithium becomes transparent (A, = 1850A).

You may use: lithium is monovalent, with molar mass mme = 6.94gmol ™! and density p =
0.534gcm 3.



