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January 2026

1. Drude dynamics and the single relaxation time approximation: In class we used a simple model
in which each collision resets an electron’s momentum to p = 0. In this problem you will analyse this
model and several generalisations, and determine when they yield the same Drude dynamics.

(a) Consider electrons in an electric field, with collisions occurring as a Poisson process with mean
interval length τ , and each collision resetting the momentum to zero, p → 0.

i. Derive
d ⟨p⟩
dt

= −eE − ⟨p⟩
τ

(1)

where ⟨p⟩ is the average electron momentum, and τ is the mean time between collisions.

ii. Hence find the drift momentum pd (the steady-state value of p) and the Drude conductivity
σ0.

iii. Show that the connected two-time correlator

Cij(t, s) = ⟨pi(t+ s)pj(t)⟩ − ⟨pi(t+ s)⟩ ⟨pj(t)⟩ (2)

obeys
Cij(t, s) = Cij(0, 0)e

−|s|/τ (3)

(b) More generally, suppose scattering is characterised by a transition rate kernel Wp→p′ : in an in-
finitesimal interval dt, an electron with momentum p scatters to p′ with probability Wp→p′dt. Let
f(r,p, t) be the phase-space density of electrons at position r and momentum p. The Boltzmann
equation is

∂f

∂t
− eE · ∇pf =

∫
d3q

(
Wq→pf(r, q, t)−Wp→qf(r,p, t)

)
. (4)

Here the left-hand side is the free transport term, while the right-hand side is the collision integral.
The quantity ∫

d3q (q − p)Wp→q (5)

gives the rate of change of momentum for electrons with momentum p. Using (4), show that the
Drude dynamics (1) for

⟨p⟩ ≡ 1

N

∫
d3rd3p f(r,p)p

is obtained if ∫
d3q (q − p)Wp→q = −p

τ
. (6)

This condition is in fact necessary and sufficient for Drude relaxation (1) for arbitrary f(r,p).

(c) A widely used simplification is the single relaxation time approximation, in which

Wp→p′ =
f0(p

′)

nτ
, (7)
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where n =
∫
d3p f0(p) =

∫
d3p f(p) is the electron density, and f0 is an equilibrium distribution

satisfying ∫
d3p f0(p)p = 0. (8)

Show that (7) satisfies (6), and that it reduces the Boltzmann equation to

∂f

∂t
− eE · ∇pf =

f0 − f

τ
. (9)

2. A failure of Drude’s theory: the thermoelectric correction: in this question you will derive
the transport coefficients of Drude theory using linear response.

(a) One method of finding transport coefficients is studying the linear response of the solutions to the
Boltzmann equation. Here we have now included the effect of spatial variation (r dependence)

∂f

∂t
+ ṙ · ∇rf + ṗ · ∇pf =

f0 − f

τ
, (10)

with ṙ = p/m and ṗ = −eE given by the electrochemical force E = E + 1
e∇µ. For constant T

and E = 0, the equilibrium state is the Maxwell–Boltzmann distribution

f0(r,p) =
n

(2πmkBT )3/2
exp

(
− p2

2mkBT

)
. (11)

In the presence of a weak electrochemical force E and a weak spatial temperature variation ∇T .
Let X1 = E and X2 = −∇T . we Taylor expand f to linear order

f = f0 + δf1 + δf2, δfj = Xj · ∇Xjf
∣∣
Xj=0

(12)

and neglect higher order terms. By using that f is a static solution to (10), show that

δfi =
F i · v τ

kBT
f0, (13)

where F 1 and F 2 are the electrochemical force, and the force due to the temperature gradient
respectively

F 1 = −eE, F 2 = −
(

p2

2m
− 3

2
kBT

)
∇T

T
. (14)

(b) The corresponding linear-response electrical and heat current densities are

⟨j⟩ = 1

V

∫
d3r d3p f(r,p)jel.(p),〈

jq
〉
=

1

V

∫
d3r d3p f(r,p)jq,el.(p)

(15)

where jel.(p) = −e(p/m) and jq,el.(p) = (p2/(2m)− µ)(p/m) are the electrical and heat current
per electron.

These are related to thermal and electrical gradients by the relation(
⟨j⟩〈
jq
〉) =

(
L11 L12

L21 L22

)(
E

−∇T

)
, (16)

Using your result for f , compute the Drude values for L12.

You may use: standard Maxwell-Boltzmann expectation values

⟨vivj⟩ = 1
3δij

〈
v2
〉
,

〈
1
2mv2

〉
= ⟨ε⟩ = 3

2kBT, σ2
ε =

〈
ε2
〉
− ⟨ε⟩2 = 3

2 (kBT )
2 (17)
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(c) Using the following definitions, express the matrix Lab in terms of σ, κ, S and T

• The electrical conductivity σ is defined by ⟨j⟩ = σE for ∇T = 0.

• The thermal conductivity κ is defined by
〈
jq
〉
= −κ∇T for ⟨j⟩ = 0

• The Seebeck coefficient S is defined by E = S∇T under open-circuit conditions ⟨j⟩ = 0

• The Peltier coefficient Π is defined by
〈
jq
〉
= Π ⟨j⟩ for ∇T = 0.

• The relation Π = TS due to Kelvin.

(d) Hence compute the Drude linear response value of the Seebeck coefficient S.

(e) The thermal conductivity receives a correction if a current is allowed to flow by closing the circuit.
In terms of σ, κ, S and T , determine

i. The thermal conductivity κclosed, defined by
〈
jq
〉
= −κclosed∇T for E = 0

ii. The dimensionless thermoelectric correction to the thermal conductivity

δκ̃ =
κclosed − κ

κ
(18)

(f) Finally, evaluate the Drude prediction for δκ̃. Compare your answer for (2(e)ii) to the empirical
value of δκ̃ for copper at room temperature. Comment on the success of Drude theory.

You may use: your calculation for S, the relations

σ0 =
ne2τ

m
, κ =

5

2

nτk2BT

m
, Π = ST (19)

and the following properties of copper at room temperature: Seebeck coefficient S = 2 ×
10−6 VK−1, conductivity σ0 = 5.9× 107 Ω−1m−1 and thermal conductivity 400Wm−1K−1.

3. The plasma frequency and the transparency of metals: Consider a Drude metal in an incident
electromagnetic wave with electric field

E(r, t) = E0 cos(k · r − ωt). (20)

Typically the mean free path of an electron λ ≪ k−1 = c/ω, so we may neglect the spatial dependence
and write

E(t) = E0 cos(ωt). (21)

(a) Consider a general superposition of frequencies,

E(t) =

∫
dω e−iωtE(ω), (22)

and look for solutions to (1) of the form

⟨p(t)⟩ =
∫

dω e−iωt ⟨p(ω)⟩ . (23)

Find the AC conductivity σ(ω), defined by j(ω) = σ(ω)E(ω), in terms of the DC conductivity
σ0, ω and τ .

(b) Using Maxwell’s equations with no net charge density,

∇ ·E = 0, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B = µ0J + ϵ0µ0

∂E

∂t
, (24)

together with standard vector identities, show that

∇2E = −ω2

c2
ϵ(ω)E(ω) (25)

and find the complex dielectric function ϵ(ω) in terms of σ0.
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(c) Show that for ωτ ≫ 1,

ϵ(ω) = 1−
ω2
p

ω2
, (26)

where ωp is the plasma frequency. Find the classical Drude value of ωp.

(d) For sufficiently low frequency, the metal is opaque, and solutions of (25) decay exponentially
with a characteristic length ξ (the penetration depth). Assuming a low frequency (but still with
ωτ ≫ 1) calculate ξ in terms of ωp and show that it diverges as ω is increased through ωp.

(e) For sufficiently high frequency, the metal is transparent and solutions of (25) are propagating
waves with wavelength λ. Express λ in terms of ωp and show that it also diverges, this time as ω
is decreased through ωp.

(f) The plasma wavelength is λp = 2πc/ωp. Calculate λp for lithium (in Ångström units). Compare
your result with the wavelength at which lithium becomes transparent (λp = 1850Å).

You may use: lithium is monovalent, with molar mass mmol = 6.94 gmol−1 and density ρ =
0.534 g cm−3.
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